Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy
نویسندگان
چکیده
BACKGROUND The sources and measurement of reactive oxygen species (ROS) in intact organs are largely unresolved. This may be related to methodological problems associated with the techniques currently employed for ROS detection. Electron spin resonance (ESR) with spin trapping is a specific method for ROS detection, and may address some these technical problems. METHODS We have established a protocol for the measurement of intravascular ROS release from isolated buffer-perfused and ventilated rabbit and mouse lungs, combining lung perfusion with the spin probe 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) and ESR spectroscopy. We then employed this technique to characterize hypoxia-dependent ROS release, with specific attention paid to NADPH oxidase-dependent superoxide formation as a possible vasoconstrictor pathway. RESULTS While perfusing lungs with CPH over a range of inspired oxygen concentrations (1-21 %), the rate of CP* formation exhibited an oxygen-dependence, with a minimum at 2.5 % O2. Addition of superoxide dismutase (SOD) to the buffer fluid illustrated that a minor proportion of this intravascular ROS leak was attributable to superoxide. Stimulation of the lungs by injection of phorbol-12-myristate-13-acetate (PMA) into the pulmonary artery caused a rapid increase in CP* formation, concomitant with pulmonary vasoconstriction. Both the PMA-induced CPH oxidation and the vasoconstrictor response were largely suppressed by SOD. When the PMA challenge was performed at different oxygen concentrations, maximum superoxide liberation and pulmonary vasoconstriction occurred at 5% O2. Using a NADPH oxidase inhibitor and NADPH-oxidase deficient mice, we illustrated that the PMA-induced superoxide release was attributable to the stimulation of NADPH oxidases. CONCLUSION The perfusion of isolated lungs with CPH is suitable for detection of intravascular ROS release by ESR spectroscopy. We employed this technique to demonstrate that 1) PMA-induced vasoconstriction is caused "directly" by superoxide generated from NADPH oxidases and 2) this pathway is pronounced in hypoxia. NADPH oxidases thus may contribute to the hypoxia-dependent regulation of pulmonary vascular tone.
منابع مشابه
Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy.
The purpose of this study was to use a direct method, that of electron spin resonance (ESR) spectroscopy, to demonstrate that reperfusion after a period of ischemia results in a sudden increase in the production of free radicals in the myocardium. The isolated buffer-perfused rat heart was used with N-tert-butyl-alpha-phenylnitrone (PBN) as a spin-trapping agent. Samples of coronary effluent we...
متن کاملCrocetin reduces the oxidative stress induced reactive oxygen species in the stroke-prone spontaneously hypertensive rats (SHRSPs) brain
Crocetin is a natural carotenoid compound of gardenia fruits and saffron, which has various effects in biological systems. In this study, we investigated the antioxidant effects of crocetin on reactive oxygen species such as hydroxyl radical using in vitro X-band electron spin resonance and spin trapping. Crocetin significantly inhibited hydroxyl radical generation compared with the control. Mo...
متن کاملApplications of Electron Spin Resonance Spectrometry for Reactive Oxygen Species and Reactive Nitrogen Species Research
Electron spin resonance (ESR) spectroscopy has been widely applied in the research of biological free radicals for quantitative and qualitative analyses of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The ESR spin-trapping method was developed in the early 1970s and enabled the analysis of short-lived free radicals. This method is now widely used as one of the most powerfu...
متن کاملDetection of Reactive Oxygen and Nitrogen Species by Electron Paramagnetic Resonance (EPR) Technique.
During the last decade there has been growing interest in physical-chemical oxidation processes and the behavior of free radicals in living systems. Radicals are known as intermediate species in a variety of biochemical reactions. Numerous techniques, assays and biomarkers have been used to measure reactive oxygen and nitrogen species (ROS and RNS), and to examine oxidative stress. However, man...
متن کاملDemystifying EPR: A Rookie Guide to the Application of Electron Paramagnetic Resonance Spectroscopy on Biomolecules
Electron Paramagnetic Resonance (EPR) spectroscopy, also known as Electron Spin Resonance(ESR) especially among physicists, is a strong and versatile spectroscopic method forinvestigation of paramagnetic systems, i.e. systems like free radicals and most transition metalions, which have unpaired electrons. The sensitivity and selectivity of EPR are notable andintriguing as compared to other spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Respiratory Research
دوره 6 شماره
صفحات -
تاریخ انتشار 2005